

2025/7/14

# カーボンナノチューブを用いた パッチ型テラヘルツ撮像デバイス

産業技術総合研究所 九州センター センシング技術研究部門 主任研究員 鈴木 大地





- 1. 自己紹介
- 2. テラヘルツ帯電磁波に関する背景
- 3. カーボンナノチューブを用いたパッチ型THz撮像デバイス (矢崎科学技術振興記念財団 2019年度奨励研究助成)

### テラヘルツ(THz)センシング



3



### 強力な非破壊検査応用として実用化が期待

### THz波を検出する方法







- 1. 自己紹介
- 2. テラヘルツ帯電磁波に関する背景
- 3. カーボンナノチューブを用いたパッチ型THz撮像デバイス (矢崎科学技術振興記念財団 2019年度奨励研究助成)

## 光熱起電力効果と高感度化の指針





高性能化→ **熱電特性(ゼーベック係数)**Sおよび**熱勾配⊿T**の向上

| 四次九州件でのる              | $\Delta T = \int_{x=0}^{l} R(x) Q_{\text{absorb}} dx$                   |
|-----------------------|-------------------------------------------------------------------------|
| <b>カーボンナノチューブ</b> の活用 |                                                                         |
|                       | $\approx \frac{l}{k \times t \times w} \times Q_{\rm in} \times \alpha$ |
|                       | ↑<br>熱的な項 光学的な項                                                         |
|                       | 熱特性・光特性双方の                                                              |
| 高い熱電特性と光吸収率を持つ        |                                                                         |

### THz光学特性のサイズ効果





# CNT膜のプロセス技術



| process     | Device size             | CNT thickness                          | Pattering        | Annex (Disadvantages)                                              |
|-------------|-------------------------|----------------------------------------|------------------|--------------------------------------------------------------------|
| Cutting     | × (Milli)               | ◯(Milli)                               | $\bigtriangleup$ | Resolution depends on one's manual dexterity                       |
| Printing    | $\triangle$ (Sub-milli) | ○(Sub-milli)                           | $\bigcirc$       | Tradeoff between resolution and thickness (viscosity of solution)  |
| Lithography | ©(Nano)                 | × (Sub-micro)<br>Difficult for etching | $\bigcirc$       | Not applicable to chemical-soluble materials (ex. chemical dopant) |



8



### レーザーアブレーションによるCNTマイクロ加工

### **Experimental Setups**



レーザーアブレーション法



# **THz characteristics of CNT films**





# 感度向上に向けた光熱構造の最適化





### パッチカメラ作製に向けた製膜プロセス開発





## パッチカメラ作製に向けた製膜プロセス開発



# Various shapes of micro-scale suspended CNT filmsSquare arraySlit-linesMy Name

Points



### Suspended, 2D, Micro-scale CNT films





CNT架橋構造膜のサイズと形状はレーザー 加工のパターンに合わせてマイクロ~センチ スケールで自由に調整可能!

# 光熱電デバイスの高性能化に向けた 新規パターニングプロセスとして有力

### CNTによるパッチ型THz撮像デバイス

### THzソフトカメラパッチ



### 任意形状の被測定物に貼って使えるパッチ型撮像デバイス





### <u>インフラ設備に組み込めるビルトインTHzカメラ</u>



### 対象物の形状に制限されない自由度の高い非破壊検査応用

パッチ型THzセンシング応用



### <u>巻き付け型パッシブ化学センサー</u>







大阪大学 荒木准教授 中央大学 河野教授 李助教



<u>光源を組み込んだインフラ設備の診断デバイス</u>



(K. Li, **D. Suzuki**, et al., Nat. Commun. 12, 3009, (2018))

まとめ



### カーボンナノチューブを用いたパッチ型テラヘルツ撮像デバイス

### レーザーによる新たな CNTデバイスプロセスを開発



### パッチ型THz撮像デバイス開発 自由度の高いセンシング応用

