

公益財団法人矢崎科学技術振興記念財団
国際交流援助 研究発表 帰国報告書

公益財団法人矢崎科学技術振興記念財団
理事長 殿

国際学術会議での研究発表を終えて帰国しましたので、下記の通り報告します。

2025年 12月 22日

氏名 満田理彩

所属 東京農工大学

職位 大学院生

1. 発表論文名

Ultrasonic response of TRPA1 with vibration enhancer for sonogenetics
ソノジェネティクスに資する振動増強因子を用いた TRPA1 の超音波応答性

2. 国際学術会議の名称

International Symposium on Biomolecular Ultrasound & Sonogenetics (ISBUS 2025)

4. 国際学術会議の開催地 (国、地名、会場名など)

Pasadena, California, USA, カリフォルニア工科大学

5. 渡航期間

2025年12月10日～2025年12月15日

6. 国際学術会議発表の要旨

本発表では、音響応答性リポソームを用いることで、イオンチャネル型受容体 TRPA1 の超音波刺激に対する応答性を増感させる新たなアプローチについて報告した。従来、ソノジェネティクス分野においては、超音波刺激時の TRPA1 の応答性の低さが課題とされてきたが、本研究ではその解決策としてリポソームを利用した応答増強効果を示した。現地では、ソノジェネティクス分野を牽引する複数の研究者から本研究に対して高い関心が寄せられ、ポスターセッションを通じて、活発な議論を行うことができた。さらに、ポスターセッション以外の場においても、ランチやカンファレンスディナーなどの交流の機会を通じて、研究の今後の展開や生体応用を見据えた課題に関する数多くの助言を得ることができた。これらのフィードバックは、今後の研究をより発展させるうえで極めて有益であり、本研究の意義と将来性を再確認する貴重な機会となった。

7. 国大学術会議の動向

本学会は、2022年にソノジェネティクスの概念が確立されたことを契機に創設された ISBUS の第2回目の開催である。比較的新しい分野でありながら、本学会には世界有数のソノジェネティクス研究者が一堂に会し、基礎研究から応用研究にいたるまで、最先端の研究成果や技術について活発な議論が行われていた。本会議を通じて把握した該当分野の動向として、超音波刺激によるヒートショック応答性プロモーターの開発や、従来の超音波刺激に加えて、光刺激や磁気刺激など他の刺激と組み合わせたアプローチが注目されている点が挙げられる。これらの研究は、細胞機能制御の精度向上や適用範囲の拡大を目指したものであり、ソノジェネティクス分野が急速に発展・多様化していることを強く印象付けるものであった。また、生体内への応用を見据えた研

究も多く報告されていた。本学会への参加を通じて、ソノジェネティクス研究の国際的な潮流を直接把握できただけでなく、自身の研究を今後どのような方向へ発展させるべきかを考えるうえで極めて有意義な機会となった。

以上

Ultrasonic Response of TRPA1 with Vibration Enhancer for Sonogenetics

Authors: Lisa Mitsuda, Ru Konno, Shun Koda, Shigenori Miura, and Yuta Kurashina

Affiliations: Tokyo University of Agriculture and Technology, Hiroshima University

Presenting author email: mitsuda@st.go.tuat.ac.jp

Website: <https://tuat-kurashina.jp/en/>

Abstract :

Central nervous system (CNS) cells have limited regenerative capacity, making many neurological disorders difficult to treat and leaving most without effective curative therapies. Abnormal protein production is a major contributing factor, as it disrupts cellular homeostasis and leads to dysregulated signaling and gene expression. To address this, various approaches using external stimulation, such as electrical [1] or optical [2] modulation, have been developed to manipulate cellular signaling and gene expression. Although these techniques offer high spatiotemporal resolution, they are generally invasive and ineffective for stimulating cells located in deep tissue regions.

Sonogenetics has recently emerged as a promising non-invasive alternative capable of modulating deep tissue activity. In particular, the mechanosensitive ion channel-type receptor TRPA1 has been reported to respond to ultrasound, inducing increases in intracellular Ca^{2+} concentrations [3]. However, current sonogenetic studies with TRPA1 remain limited, mostly confirming ultrasound responsiveness in vitro or superficial tissue, and effectively inducing membrane vibrations in target cells deep within the brain or CNS remains technically challenging. Therefore, methods that enhance the responsiveness of TRPA1 to ultrasound are essential for advancing sonogenetic applications.

In this study, we propose a strategy to potentiate TRPA1-mediated ultrasound responses using a vibration enhancer (Fig. 1a). Specifically, supersaturated CO_2 liposomes are incorporated into the extracellular environment to enhance membrane vibrations via their acoustic impedance properties locally. Previous findings indicate that cell adhesion, closely associated with the cytoskeleton, influences the responsiveness of TRPA1 to ultrasound, suggesting that modulating mechanical sensitivity can improve activation efficiency. By enhancing TRPA1 responsiveness, this approach may enable reliable, non-invasive stimulation of deep CNS tissues.

Supersaturated CO_2 liposomes were dispersed into the culture medium. After genetically transfecting HEK293 cells with TRPA1 and GCaMP6f, the cells were irradiated with ultrasound. The results demonstrated that GCaMP6f fluorescence corresponding to Ca^{2+} influx was significantly enhanced in the suspension with liposomes compared to that without liposomes (Fig. 1 b,c). These findings suggest that combining TRPA1 with supersaturated CO_2 liposomes provides a feasible pathway toward non-invasive ultrasound-based therapies.

Acknowledgments:

References:

- [1] H. S. Mayberg *et al.*, “Deep Brain Stimulation for Treatment-Resistant Depression”, *Neuron*, vol. 45, No. 5, pp. 651-660, 2005
- [2] K. Deisseroth, “Optogenetics”, *Nat Methods*, vol. 8, No. 1, pp. 26-29, 2011.
- [3] M. Duque *et al.*, “Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels”, *Nat Commun*, vol. 13, No. 1, pp. 600, 2022.

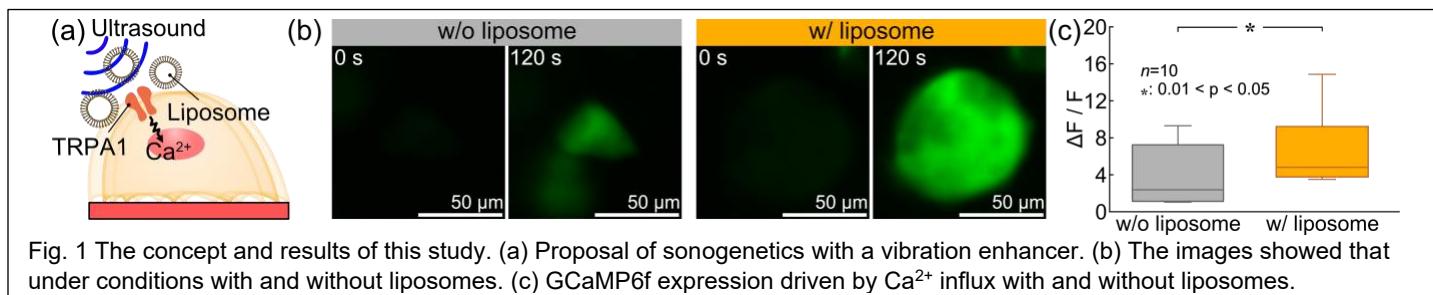


Fig. 1 The concept and results of this study. (a) Proposal of sonogenetics with a vibration enhancer. (b) The images showed that under conditions with and without liposomes. (c) GCaMP6f expression driven by Ca^{2+} influx with and without liposomes.