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Fast and Automatic Analysis of Time-Evolution Images using Machine Learning
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Body of the Abstract

To address the question of how to grow high-quality thin films, numerical research has been
conducted to understand and control various crystal growth techniques. Solid-phase
crystallization (SPC) is the oldest and most representative synthesis method in which
crystallization is induced by annealing an amorphous thin film. Recently, SPC has been in the
spotlight because it provides extremely high carrier mobility of Ge-based materials even with
low-temperature annealing, leading candidates for replacing Si. To understand and discuss the
SPC of a system, it is important to observe the phase transition from amorphous to crystalline,
determine the lateral growth velocity and nucleation frequency of the crystalline domains, and
determine the activation energies and frequency factors. These physical properties have been
obtained by repeating annealing of samples and conducting ex-situ observations and manual
analyses. However, this process is time-consuming, labor-intensive, and inevitably subject to
systematic errors among measurers. Materials informatics is an interdisciplinary field of
machine learning (ML) and materials engineering and is a new approach based on experiments,
theory, and computation. Although the need for fast analysis and subjective removal is high,
the application of ML to micrograph recognition is still limited. The main reason for this is that
collection of micrographs, which serves as training data, requires an enormous amount of
effort. In this study, an automated analysis technique was developed for SPC properties using
fake micrographs automatically generated within a few minutes as ML training data and an in-
situ annealing observation system (Figure). Using the recognition of the SPC process of high-
carrier-mobility Ge as an example, we demonstrated that ML can recognize crystal domains in
in-situ micrographs through learning of fake micrographs. The proposed technique not only
reduces the time and human effort required to derive SPC properties, it also enhances accuracy
by eliminating human subjectivity.
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Figure 1. Schematic of the workflow for deriving physical properties of solid-phase crystallization.



