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Screening Current-Induced Stress 1n
Edge-Impregnated REBCO Coils for 33T-CSM

Shohei Nojima, Yuji Tsuchiya, Alexandre Zampa, Arnaud Badel, Yoh Nagasaki, Makoto Tsuda and Satoshi Awaji

Abstract—Edge impregnation is a key technology for
fabricating robust, high-field REBCO insert magnets. However,
the effect of screening current-induced stress (SCIS), a critical
challenge in ultra-high field magnet design, has not been fully
clarified. This study aims to investigate the influence of SCIS on
edge-impregnated REBCO coils through an electromagnetic-
mechanical analysis. The investigation focuses on the 33 T
cryogen-free superconducting magnet (33T-CSM) under
development at HFLSM, Tohoku University. The analysis
revealed that SCIS significantly amplified the hoop strain in
edge-impregnated coils, predicting a maximum strain exceeding
the conductor's irreversible limit. Compared with the full
impregnation, the edge impregnation was insufficient to suppress
SCIS to the acceptable level even with mechanical reinforcement
although it made the delamination stress negligible. Notably, the
analysis overestimated the hoop strain compared with
experiments because the large-scale prototype coil (33T-LPC) has
been successfully validated without degradation. Possible origins
for the overestimation are discussed, including interfacial friction
between the stacked pancake coils.

Index Terms—Edge impregnation, REBCO coil, screening
current induced stress (SCIS), ultra-high field superconducting
magnet.

[. INTRODUCTION

N recent years, the development of ultra-high field
superconducting magnets has been actively pursued
worldwide. This progress includes the successful
operation of several key magnets, such as the 32T all-
superconducting magnet at the National High Magnetic Field
Laboratory (NHMFL) [1], the 32.35 T magnet at the Institute
of Electrical Engineering, Chinese Academy of Sciences (IEE
CAS) [2], the 25 T cryogen-free superconducting magnet at
the High Field Laboratory for Superconducting Materials
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(HFLSM) [3], and the Little Big Coil exceeding 45T at
NHMFL [4]. Many of these achievements rely on REBCO
conductors, which have demonstrated high potential in terms
of both critical current and mechanical strength [1], [2], [4],
[5]. Building on these successes, even more ambitious projects
are now underway, such as a 40 T superconducting magnet at
NHMEFL [6], a 35 T magnet at IEE CAS [7], a 40 T magnet at
CEA [8], NMR magnets exceeding 30 T at RIKEN , MIT, and
Bruker [9], [10], [11] and a 40 T magnet for a muon collider at
CERN [12]. In line with this global trend, a 33 T cryogen-free
superconducting magnet (33T-CSM) is currently under
development at HFLSM, Tohoku University [13]. The 33T-
CSM is composed of a 14 T LTS outsert magnet and a 19 T
REBCO insert magnet. The REBCO insert employs a "robust
structure"” that incorporates several key features [14]:

(1) all turn separated by co-wound fluorine-coated

polyimide tape,

(2) face-to-back 2-tape bundled REBCO conductor,

(3) REBCO tape with a 40 pum-thick copper stabilizer layer,

(4) edge impregnation combined with FRP plates.

Edge impregnation has been shown to effectively reduce the
maximum hoop stress/strain under uniform current conditions
[15], [16]. In fact, a large-scale prototype coil for the 33T-
CSM (33T-LPC), consisting of 20 stacked REBCO pancake
coils with the robust structure, successfully generated a
magnetic field of 25 T under 14 T background field [16], [17].

However, a significant challenge in the development of
ultra-high field magnets is the electromagnetic stress/strain
induced by screening currents (SCIS) [18], [19], [20], [21],
[22], [23]. Previous studies have reported that SCIS can cause
large localized tensile and compressive stresses, potentially
leading to plastic deformation or buckling of the REBCO tape
[1], [17], [21]. While fully impregnated REBCO coils have
been reported to mitigate SCIS, they remain susceptible to
delamination stress [20], [24], [25]. In contrast, the influence
of SCIS on edge-impregnated REBCO coils has not yet been
clarified [15], [16], [26].

Therefore, this study investigates the influence of SCIS on
edge-impregnated REBCO coils using numerical analysis. The
primary design target is to maintain the strain in the REBCO
conductor below its irreversible limit of 0.4% [27], [28]. Our
approach is to investigate the fundamental impact of SCIS,
compare the mechanical stiffness of coils with different
impregnation methods, and validate the numerical models
against available experimental data.
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II. NUMERICAL ANALYSIS METHOD

A. Analysis target

A sequential electromagnetic-mechanical analysis was
performed using COMSOL Multiphysics for the 2 magnets
[19], [24], [25], [29]: 33T-CSM and 33T-LPC. The two
magnets differ mainly in the number of stacked pancake coils
and the use of reinforcement tape.

The investigation began with a focus on the 33T-CSM.
First, to investigate the fundamental impact of SCIS on an
edge-impregnated REBCO coil, the hoop strain was compared
between cases with and without screening currents. Second, to
assess the effect of the impregnation method on SCIS, the
hoop strain and radial stress were compared among three
distinct coil types: edge impregnation, dry winding, and full
impregnation. Finally, the focus shifted to the 33T-LPC, for
which the hoop strain was calculated numerically and
compared with available experimental data.

B. Analysis method

Table 1 shows the specifications of the magnets [13], [17].
In the -electromagnetic model, the screening current

TABLE I
SPECIFICATIONS OF THE ANALYSIS FOR 33T-CSM & 33T-LPC

Parameters Unit  33T-CSM 33T-LPC
Magnet design
Total center field T 33 25
Center field of LTS magnet T 14 14
Center field of REBCO magnet T 19 11
REBCO magnet [13], [17]
# of pancakes - 64 20
# of turns per pancake - 246 279
# of strands of REBCO tape - 2
Size of REBCO tape mm 4,1vidth ¢ (0,1 5thick
Thickness of reinforcement tape  mm Has(t)eiloy,
Thickness of insulation tape mm Fluorine-coated polyimide,
0.055
Inner radius, R;, mm 34
Outer radius, R y¢ mm 147.2 133
Height mm 324.5 101
Thickness of edge epoxy mm 0.220
Thickness of FRP plate mm 0.180
Operation current A 361 300
Operation temperature K 10 4.2
REBCO tape
Manufacturer - Fujikura
Product name - FESC-SCHO04(40)
Thickness of substrate mm 0.05
Thickness of Cu stabilizer mm 0.04/side
Critical current, I.(0) A 3016 2685
Fitting parameter, B, T 2.95 2.81
Fitting parameter, a - 1.04 0.93
Young’s moduli
REBCO tape GPa 125
Reinforcement tape GPa 205 -
Insulation tape GPa 3.4
Edge epoxy GPa 18
FRP plate GPa 30

distribution was computed using the homogenized T-A
method [30], [31], and the magnetic field dependence of the
critical current, I.(B) was shown in Figure 1 and described by
a modified Kim model [32], [33], [34] fitted to in-house
experimental data up to 24 T [35], [36], [37], [38],

LB) = 1B = oD
¢ 7 (1 +1B/By)*
where B, is radial magnetic field component, B, and « are the
fitting parameter assuming the REBCO tapes with I, = 220 A
at 77.3 K self-field, which are shown in Fig. 1. Current-
voltage characteristics were formulated by the n-value model
where n was fixed as 20.

In the structural analysis, the Lorentz force density (J X B),
obtained from the electromagnetic analysis, was applied to the
domains representing the REBCO tapes. All materials were
assumed to be linear elastic with isotropic Young's moduli.
For the contact condition, a penalty method was used between
tapes in the edge-impregnated and dry-wound coils where no
epoxy was present, while a bonded condition was applied to
the fully impregnated coil. The bottom surface of the coil was
fixed in the z-direction by applying a displacement boundary

condition of u, = 0.

3000 1= o Exp42K
Ico = 3016 A :
Ico = 3015 £ Fit42 K
2500 o =093 ! = ExplOK
Fit 10 K
0K
2000
=
“ 1500
1000
500

15 -10 -5 0 5 1 15 20 25
Br (T)
Fig. 1. Magnetic field dependence of the critical current of
the REBCO tapes with fitting curves using the modified
Kim model.
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Fig. 2. Current density (a) without and (b) with screening
current at 361 A/33 T in 33T-CSM. Only half of the
magnet is modeled using symmetry.
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Fig. 3. Hoop strain distribution in 33T-CSM (a) without and (b) with screening current. Only even-numbered pancakes are

shown. Square dots indicate the maximum strain in the pancakes.
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Fig. 4. (a-c) Hoop strain and (d-f) radial stress distributions
in the #22 pancake for edge-impregnated, dry-wound, and
fully-impregnated coils, considering screening current.

II1. ANALYSIS RESULTS AND DISCUSSIONS

A. SCIS in edge-impregnated REBCO coil of 33T-CSM

Figure 2 shows the current density distribution under two
conditions: (a) assuming a uniform transport current and (b)
incorporating the screening current. While the former case
exhibits a homogeneous current flow, the latter shows a highly
non-uniform distribution, characterized by large, localized
current densities induced at the tape edges. The screening
current penetrates more deeply from the middle to the top
pancakes. As the radial magnetic field (B;) increases for the
larger # of the pancakes, the screening current extends over
the entire tape width around at pancake #, resulting in a
decrease of I.. at the top pancake.

Figure 3 shows the hoop strain distributions (a) without and
(b) with screening current. Without screening current, the
maximum hoop strain was approximately 0.3% in the central

0.5
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Fig. 5. Hoop strain on the upper edge of the REBCO tapes

(solid) with and (dashed) without screening current for (a)

the mid-pancake coil #2 and (b) the top pancake coil #32.

pancake coil, which is consistent with our previous study [15],
[16] and remains below the strain limit of 0.4%. In contrast, as
shown in Fig. 3 (b), the maximum hoop strain reached
approximately 0.7% at the #22 pancake coil, that significantly
exceeds the allowable design criterion. The reason why the
hoop strain reaches its maximum at about 70% of the coil
height from the middle plane is considered to be the balance
between the decrease in I, due to the increase in B, and the
expansion of the screening current region.



2-LO-HF .4
2 (a) &g [%]
0.5
T —— 0.3
—— :
| —————
B ————
ﬂmsu 02
_fl___“*“““"___;';__-_:nix‘_‘o;2§7__7»(!l__ - -
Midplane Strain gage 0-1

Exp: = 0.21% Analysis: = 0.20% 0

, (b) J [A/m?] x10°

ﬂ7 P —— 0‘5
—— 0

o -0.5
B e =l -1

-1.5
-2

Fig. 6. Analytical results for the 33T-LPC at 300 A /25 T, showing (a) hoop strain and (b) current density distributions. The
hoop strain at the outermost turn of the mid-pancake is compared with experimental data.

B. Comparison of the impregnation methods in 33T-CSM

To compare the impregnation technique, the analysis
focused on the #22 pancake coil, as this was where €4 max Was
observed when considering SCIS (as shown in Fig. 3). Figure
4 presents the (a-c) hoop strain and (d-f) radial stress
distributions in the #22 REBCO pancake coil for the edge-
impregnated, dry-wound, and fully-impregnated coils, with the
effects of screening currents included. An analysis of the hoop
strain (Fig. 4(b)) reveals that while the dry-wound coil
exhibits a substantial maximum strain (€4 max ~ 1.2%), the
fully-impregnated coil effectively suppresses SCIS, with its
maximum strain remaining at the design limit (&4 ~ 0.4%).
These trends are consistent with those reported in previous
studies [17], [18], [19], [21], [24], [25]. Meanwhile, with
respect to the radial stress (Fig. 4(d, ¢)), the REBCO tapes in
both the edge-impregnated and dry-wound coils experience no
delamination stress. This is attributed to the absence of epoxy
between the tapes, which prevents the propagation of radial
tensile stress. In contrast, the fully impregnated coil
experiences a significant delamination stress (o,,- & 80 MPa),
which poses a potential risk of degradation (a,,, > 10MPa)
[34]. Therefore, it is found that while edge impregnation
prevents delamination stress, the reinforcement it provides is
insufficient to fully suppress the large strain induced by SCIS.

Figure 5 shows the hoop strain along the radial direction on
the upper edge of the REBCO tape for (a) a mid-pancake coil
#2 and (b) a top pancake coil #32. The dashed and solid lines
represent the results without and with screening currents,
respectively.  Without screening currents, the edge
impregnation reduces the maximum hoop strain in both the
mid and top pancakes, a trend consistent with previous
research [15], [16]. For the mid-pancake coil, where the
influence of the screening current is minimal, a similar result
is obtained even when SCIS is considered. However, in the
top pancake coil, which is strongly affected by screening
currents, the hoop strain increased from 0.3% to 0.8% in the
dry coil and from 0.25% to 0.51% in the edge-impregnated

coil, highlighting the large impact of the screening current.

C. Comparison of analysis and experiment for the 33T-LPC

The preceding analysis predicted that SCIS would exert a
significant influence on edge-impregnated coils. To validate
this, the calculated SCIS in the 33T-LPC was compared with
available experimental data from its successful test to 25 T in
a 14 T background field [17]. Figure 6 shows the analytical
results for (a) hoop strain and (b) current density distributions.
The analysis shows good agreement with the experiment for
the central pancake coil #1, where a strain of 0.20% was
calculated, consistent with the 0.21% measured by a strain
gauge on the outermost turn. For the other pancake coils,
however, the analysis predicts that the hoop strain exceeds the
0.4% limit in all cases, reaching a maximum of 0.77%. Since
the magnet operated without any degradation, this indicates
that our model is likely to overestimate the strain in the
pancake coils other than the mid-pancake.

D. Discussion

Here, we discuss the potential reasons for this significant
overestimation of strain. First, as reported in previous studies,
the overestimation could be partially resolved by incorporating
factors neglected in our analysis, such as winding stress,
thermal strain from cooldown, and the tilting effect of the
REBCO tapes [24], [25], [29], [31], [34], [40].

In addition to these factors, we believe the overestimation is
primarily resolved by the interfacial friction between coils in
the magnet's stacked structure. The 33T-LPC consists of 20
stacked pancake coils subjected to a large axial compressive
force from both initial pre-compression and electromagnetic
attraction during operation. This compressive force generates
friction at the contact surfaces between the coils, providing a
mechanical constraint against hoop strain and suppressing
SCIS because of the opposing stress/strain between adjoining
pancake surfaces. Hence, gluing the adjoining pancakes may
be effective to reduce SCIS. This mechanism could explain
the successful operation despite the high predicted strain, and
its effects will be examined in future work.
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IV. CONCLUSION

The effect of screening current-induced stress (SCIS) on
edge-impregnated REBCO coils was investigated through
numerical analysis. The findings of this work are as follows:

1) The analysis revealed that SCIS causes the hoop strain to
reach 0.7% in the 19 T REBCO insert magnet, which
significantly exceeds the conductor's irreversible strain
limit of 0.4% . While edge impregnation successfully
avoids the delamination stress seen in fully impregnated
coils, its mechanical reinforcement alone is insufficient
to suppress the large strain induced by screening current.

2) The analysis may significantly overestimate the hoop
strain when compared with experimental observations.
While the numerical model predicted the prototype coil
would experience strains over the degradation limit, the
magnet was successfully operated without any damage.
This suggests that additional contributions such as the
friction between adjoining pancakes to suppress the
strain should be considered.

In conclusion, our analysis shows that SCIS significantly
affects edge-impregnated REBCO coils, but it overestimates
the strain in the actual magnet. This overestimation is likely
due to interfacial friction between pancake coils, which will be
investigated in future work.
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